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This paper deals with the uncoupling of linear damped multi-degree-of-freedom gyroscopic
potential systems in which the damping is taken to have a specifically chosen form. Neces-
sary and sufficient conditions are obtained that guarantee the uncoupling of such damped
systems into independent subsystems with at most two degrees-of-freedom. Along with
several other results, it is shown that when the potential (stiffness) matrix of the damped
system has distinct eigenvalues—a situation commonly found in civil, mechanical, and aero-
space engineering, as well as in nature—the damping matrix must have this specifically
chosen form for any such multi-degree-of-freedom system to be capable of being uncoupled.
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1 Introduction
In a recent paper, the necessary and sufficient conditions have

been provided for the existence of a real linear coordinate transfor-
mation that uncouples a multi-degree-of-freedom (MDOF) linear
gyroscopic conservative system into a series of uncoupled subsys-
tems, each of which has at most two degrees-of-freedom [1]. The
aim of this paper is to extend these results to a broad class of
damped gyroscopic potential systems and show that they too can
be uncoupled into a series of at most two-degree-of-freedom sub-
systems. Such a decoupling into low-dimensional independent
dynamical subsystems provides (a) improved physical insights
into the complex behavior of such MDOF systems and (b) compu-
tational approaches that are more accurate and highly efficient,
since the responses of the two-degree-of-freedom subsystems and
the single-degree-of-freedom subsystems are amenable to much
better physical and analytical understanding.
We consider the damped gyroscopic potential system described

by

M̃q̈ + D̃q̇ + G̃q̇ + K̃q = f̃ (t) (1)

in which q(t) and f̃ (t) are real n-vectors, the constant n by nmatrices

M̃ = M̃
T
> 0, D̃ = D̃

T
, G̃ = −G̃T

, and K̃ = K̃
T
. The dots denote dif-

ferentiation with respect to time.
Using the real coordinate transformation q(t) = M̃

−1/2
x(t) and

multiplying Eq. (1) by M̃
−1/2

, we get

ẍ + Dẋ + Gẋ + Kx = f (t) (2)

where

D = M̃
−1/2

D̃M̃
−1/2

(3)

G = M̃
−1/2

G̃M̃
−1/2

(4)

K = M̃
−1/2

K̃M̃
−1/2

(5)
and the n-vector

f (t) = M̃
−1/2

f̃ (t) (6)

The systems described in Eqs. (1) and (2) are equivalent, and we
will deal mainly with Eq. (2) in what follows. We shall refer to the
matrices K, G, and D as the stiffness (potential) matrix, the gyro-
scopic matrix, and the damping matrix, respectively.
Consider the symmetric matrix D in Eq. (2) described by the

relation

D = u0I +
∑n−1
i=1

(aiK
i + bi(GKG)

i) +
∑h−1
i=1

ciG
2i (7)

where u0, ai, bi, and ci are real numbers. The integer h in the upper
limit of the last summation is the degree of the minimal polynomial
ofG2 and equals the number of distinct eigenvalues of the matrixG2.
We note that when ai= 0 for i= 2,…, n−1, and all the coefficients

bi and ci in Eq. (7) are equal to zero, the corresponding damping
model is the so-called “proportional damping model,” and it was
introduced by Rayleigh in his “The Theory of Sound” published
in 1894 [2]. Also, when all the bi and ci are equal to zero, Eq. (7)
reduces to the series

D = u0I +
∑n−1
i=1

aiK
i (8)
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Caughey and O’Kelly [3] showed that when all eigenvalues of
the potential matrix K are distinct, the representation of the
damping matrix D in Eq. (8) is both necessary and sufficient for
the complete decoupling (diagonalization) of the corresponding
damped (non-gyroscopic) system, i.e., of the system described by
the equation ẍ + Dẋ + Kx = f (t).
We begin with the following Lemma.

LEMMA 1. Let K=KT and G=−GT≠ 0 be n by n real matrices,
and let rank(G)= 2m≤ n. If and only if the following two conditions
are satisfied

KG2 = G2K (9)

and

(KG)2 = (GK)2 (10)

then there exists a real orthogonal matrix Q such that

QTGQ = Γ

= diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )
(11)

QTKjQ = Λj = diag(λj1, . . . , λ
j
n) (12)

QTG2jQ = Γ2j = (−1) jdiag(β2j1 I2, . . . , β
2j
mI2, 0, . . . , 0) (13)

and

QT (GKG)jQ = (ΓΛΓ) j

= (−1)jdiag(β2j1 λ
j
2, β

2j
1 λ

j
1, . . . , β

2j
mλ

j
2m, β

2j
mλ

j
2m−1,

0, . . . , 0),

(14)

where integer j≥ 1, all the λk are real numbers, and all the βk are
nonzero real numbers.

Proof. Conditions (9) and (10) are necessary and sufficient for the
existence of a real orthogonal matrix Q such that

QTKQ = Λ = diag(λ1, λ2, . . . , λn)

and

QTGQ = Γ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )
where the n real numbers λk are the eigenvalues of the matrix K, and
the m imaginary pairs ±iβk are the nonzero eigenvalues of G (see
Ref. [1]). Then

QTKjQ = (QTKQ)j = Λj = diag(λj1, . . . , λ
j
n)

and

QTG2Q = (QTGQ)2 = Γ2 = −diag(β21I2, . . . , β
2
mI2, 0, . . . , 0)

Consequently

QTG2jQ = (QTG2Q)j = Γ2j = (−1)jdiag(β2j1 I2, . . . , β
2j
mI2, 0, . . . , 0)

We also have

QTGKGQ = QTGQQTKQQTGQ = ΓΛΓ

= −diag(β21λ2, β
2
1λ1, . . . , β

2
mλ2m, β

2
mλ2m−1, 0, . . . , 0)

and

QT (GKG)jQ = (QTGKGQ)j = (ΓΛΓ)j

= (−1)jdiag(β2j1 λ
j
2, β

2j
1 λ

j
1, . . . , β

2j
mλ

j
2m, β

2j
mλ

j
2m−1,

0, . . . , 0) ▪

2 Main Results
We first show that when the damping matrix has the form given

in Eq. (7), then under the same conditions that allow the multi-
degree-of-freedom gyroscopic potential system to be uncoupled,
the damped gyroscopic potential system can also be similarly
uncoupled using a real coordinate transformation. Each of these
uncoupled subsystems is shown to have at most two degrees-of-
freedom.
Result 1. Let rank(G)= 2m≤ n. If and only if

KG2 = G2K (15)

and

(KG)2 = (GK)2 (16)

then there exists a coordinate change x(t)=Qp(t) with QTQ= I
that decomposes Eq. (2) with the damping matrix of the form
given in Eq. (7) into m decoupled two-degree-of-freedom subsys-
tems, and n − 2 m decoupled single-degree-of-freedom subsystems
given by

p̈ + Ddiag ṗ + Γ ṗ + Λp = QTf (t) (17)

where

Λ = diag(λ1, . . . , λn) (18)

Γ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0 . . . , 0

( )
(19)

and the diagonal matrix

Ddiag = diag(γ1, γ2, . . . , γn)= u0I +
∑n−1
i=1

(aiΛi + bi(ΓΛΓ)i)+
∑h−1
i=1

ciΓ2i.

(20)

Proof. Using the orthogonal transformation x=Qp in Eq. (2) and
multiplying from the left by QT gives

p̈ + QTDQ ṗ + QTGQ ṗ + QTKQp = QTf (t)

It follows from Lemma 1 and Eq. (7) that an orthogonal matrix Q
exists, such that

QTKQ = Λ, QTGQ = Γ, QTDQ = Ddiag

where Λ, Γ, and Ddiag are as in Eqs. (18), (19), and (20), if and only
if conditions (15) and (16) are satisfied. We will refer to the coordi-
nate p from here on as the principal coordinate. ▪

COROLLARY 1. Suppose that rank(G)= 2m≤ n and that all nonzero
eigenvalues of the matrix G are distinct. If and only if KG2=G2K,
then there exists a coordinate change x(t)=Qp(t) with QTQ= I that
decomposes Eq. (2) with the damping matrix of the form (7) into m
decoupled two-degree-of-freedom subsystems, and n − 2 m decou-
pled single-degree-of-freedom subsystems given by Eqs. (17)–(20).

Proof. If all nonzero eigenvalues of the matrix G are distinct, then
KG2=G2K implies (KG)2= (GK)2 (see Ref. [1]), and the result
follows from Result 1. ▪

Remark 1. Corollary 1 points out that when the nonzero eigenval-
ues of G are distinct, the two necessary and sufficient conditions
required for uncoupling the damped system into at most two-
degree-of-freedom subsystems are replaced by a single necessary
and sufficient condition that ensures such an uncoupling. ▪
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Example 1. Consider the system described by Eq. (2) with

K =
2 −1 1
−1 2 1
1 1 2

⎡
⎣

⎤
⎦, G =

0 1 −2
−1 0 −1
2 1 0

⎡
⎣

⎤
⎦, D =

8 −4 1
−4 11 4
1 4 8

⎡
⎣

⎤
⎦

(21)

Since G is a 3 by 3 matrix, one of its eigenvalues must be zero, and
the other two eigenvalues must be purely imaginary complex con-
jugate pairs. Hence, its two nonzero eigenvalues are distinct.
A simple computation shows that

G2 =
−5 −2 −1
−2 −2 2
−1 2 −5

⎡
⎣

⎤
⎦

and it is easy to see that

D = 9I + 2K + G2

Also since,

KG2 = −9
1 0 1
0 0 0
1 0 1

⎡
⎣

⎤
⎦ = G2K

Corollary 1 is applicable. Thus, there exists a coordinate change
x(t) =Qp(t) such that the system described by Eq. (2) in which
the matrices K, G, and D are given in Eq. (21), decomposes into
two subsystems—one with a two-degree-of-freedom and the other
a single-degree-of-freedom subsystem. Indeed, the coordinate
change x=Qp with

Q =
1/

��
2

√
1/

��
3

√
1/

��
6

√
0 1/

��
3

√
−2/

��
6

√
1/

��
2

√
−1/

��
3

√
−1/

��
6

√

⎡
⎣

⎤
⎦

reduces this system to the form

p̈1
p̈2

[ ]
+

9 ṗ1
3 ṗ2

[ ]
+

��
6

√ 0 1

−1 0

[ ]
ṗ1
ṗ2

[ ]
+

3p1
0

[ ]

=
(f1(t) + f3(t))/

��
2

√

(f1(t) + f2(t) − f3(t))/
��
3

√
[ ]

p̈3 + 15 ṗ3 + 3p3 = (f1(t) − 2f2(t) − f3(t))/
��
6

√

It is important to note that the potential matrix K of this example
has two equal eigenvalues (λ1= λ3= 3), while all the eigenvalues of
the damping matrixD are distinct; therefore, the matrix D cannot be
represented in the form shown in Eq. (8). ▪

COROLLARY 2. Let rank(G)= 2m≤ n. If and only if KG=GK, then
there exists a coordinate change x(t)=Qp(t) with QTQ= I that
decomposes Eq. (2) with the damping matrix of the form (7) into
form (17) with

Λ = diag(λ1I2, . . . , λmI2, λ2m+1, . . . , λn) (22)

and the Γ and Ddiag same as in Eqs. (19) and (20), respectively.

Proof. If KG=GK, then KG2=KGG=GKG=G2K and (KG)2=
(GK)2, and according to Result 1, the system can be decomposed
into form (17)–(20) using an orthogonal transformation. In
addition, KG=GK requires λ1= λ2,…, λ2m−1= λ2m [1], and denot-
ing repeated numbers λj with λ1, λ2, …, λm, we get Eq. (22). Con-
versely, suppose an orthogonal matrix Q exists such that QTKQ=
Λ and QTGQ=Γ, with Λ and Γ given in Eqs. (22) and (19).
Then, KG=QΛΓQT=QΓΛQT=GK since it is easy to see that Λ
and Γ commute now. ▪

Remark 2. The commutation condition given in Corollary 2,
though a single necessary and sufficient condition, is much more
restrictive than the two independent conditions given in Result
1. By this, we mean that the number of matrix pairs {K,G} that
commute is generally far smaller than those that satisfy the two con-
ditions (Eqs. (15) and (16)) given in Result 1 [1]. ▪

When there exists a real orthogonal matrix Q such that QTKQ=
Λ, QTGQ=Γ, and QTDQ= diag(γ1,…, γn), where Λ and Γ are as in
Eqs. (18) and (19), respectively, we will say that the coordinate
transformation x=Qp transforms Eq. (2) into a quasi-diagonal
form.
Recall that we chose a specific form for the symmetric damping

matrix D in Eq. (7). We know that when the matrix D has this form,
the matrices K, G, and D can be simultaneously quasi-diagonalized
by a real orthogonal matrix Q (Eqs. (18)–(20)).
We next discuss the conditions under which any given symmetric

damping matrix D that allows quasi-diagonalization of the system
can be expressed in the form given in Eq. (7). We want to determine
the conditions for the matrix QTDQ= diag(γ1, γ2….γn) in which γi

′s
are arbitrary real numbers so that QTDQ can be expressed in
the form given in Eq. (20). In other words, given an arbitrary
vector γ= [γ1,…, γn]

T of real numbers, we ask: under what condi-
tions can one find all the ai ′s, bi ′s, ci′s, and u0 so that the equation

diag(γ1, . . . , γn) = u0I +
∑n−1
i=1

(aiΛi + bi(ΓΛΓ)i) +
∑h−1
i=1

ciΓ2i (23)

is satisfied?
Equation (23) can be rewritten as

γ = 1̂ A B C
[ ]

z (24)

where 1̂ = [1, 1, . . . , 1]T , z = [u0, a1, . . . , an−1︸������︷︷������︸
=ã

, b1, . . . , bn−1︸������︷︷������︸
=b̃

,
c1, . . . , ch−1︸������︷︷������︸

=c̃

]T , and

A =

λ1 . . . λn−11
λ2 . . . λn−12
. . . . . . . . .

λn . . . λn−1n

⎡
⎢⎢⎣

⎤
⎥⎥⎦

B =

−β21λ2 −β21λ1 . . . −β2mλ2m −β2mλ2m−1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

(−β21λ2)
n−1

(−β21λ1)
n−1

. . . (−β2mλ2m)
n−1

(−β2mλ2m−1)
n−1

0 . . . 0

⎡
⎢⎣

⎤
⎥⎦

T

and

C =

−β21 −β21 . . . −β2m −β2m 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

(−β21)
h−1

(−β21)
h−1

. . . (−β2m)
h−1

(−β2m)
h−1

0 . . . 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦

T
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The linear Eq. (24) is solvable, i.e., the matrix QTDQ= diag(γ1,…,
γn) is expressible in the form in Eq. (20), if and only if

rank 1̂ A B C γ
[ ]

= rank 1̂ A B C
[ ]

.

Observe that the n by n matrices 1̂ A
[ ]

and 1̂ B
[ ]

are Vander-
monde matrices of eigenvalues of K(Λ) and GKG(ΓΛΓ), respec-
tively; therefore, if either K or GKG have distinct eigenvalues, then

rank 1̂ A B C
[ ]

= n

so Eq. (24) has solutions in these cases. Indeed, in the first case
(see [4], for example), denoting the n by n matrix Â: = [1̂ A], we
have

det (Â): = det ([1̂ A]) =
∏

1≤j<i≤n

(λi − λj) ≠ 0

since λi≠ λj for i≠ j, so that Â is nonsingular. Equation (24) can then
be rewritten as

Â
u0
ãT

[ ]
= γ − Bb̃

T − Cc̃T (25)

and for any arbitrarily chosen column vectors b̃
T
and c̃T , Eq. (25)

can be solved for the vector [u0 a]T . Thus, when the eigenvalues
of K are distinct, one can always find a set of u0, ai ′s, bi′s, and
ci ′s such that Eq. (24) (and Eq. (23)) is always satisfied. A similar
argument can be made when the eigenvalues of the matrix GKG
are distinct by considering the nonsingular Vandermonde matrix
B̂ = [1̂ B] and solving the linear equation

B̂
u0

b̃
T

[ ]
= γ − AãT − Cc̃T (26)

for arbitrary column vectors ãT and c̃T , thereby obtaining a set of
constants u0, ai ′s, , bi ′s, and ci ′s that satisfy Eq. (23).
We have then the following result.

Result 2. When either the matrix K or GKG has all distinct eigen-
values, then the conditions given by Eqs. (7), (15), and (16) are nec-
essary and sufficient for quasi-diagonalization of Eq. (2) using an
orthogonal coordinate transformation. ▪

Example 2. To illustrate Result 2, we consider a more substantive
eight-degree-of-freedom damped gyroscopic potential system
described by Eq. (2) with a potential matrix given by

K =

2.2821 −0.9874 −0.2882 0.0715 −0.0401 −0.1114 −0.1044 −0.0517
−0.9874 1.6587 0.5137 −0.4269 0.0047 0.2059 −0.3842 −0.7003
−0.2882 0.5137 2.7527 −0.5283 0.1151 −0.3265 0.3665 −0.4207
0.0715 −0.4269 −0.5283 2.0280 0.3005 −0.1207 −0.0345 −0.6098

−0.0401 0.0047 0.1151 0.3005 2.0820 −0.1580 −0.4949 −0.5872
−0.1114 0.2059 −0.3265 −0.1207 −0.1580 1.4961 0.1293 −0.4578
−0.1044 −0.3842 0.3665 −0.0345 −0.4949 0.1293 2.7341 −0.0716
−0.0517 −0.7003 −0.4207 −0.6098 −0.5872 −0.4578 −0.0716 2.9662

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

whose eigenvalues are distinct, a gyroscopic matrix given by

G =

0 0.1678 −0.9405 −0.2660 −0.5625 −0.3012 0.3524 0.8074
−01678 0 1.2850 −0.4362 0.2102 0.0295 −0.4523 0.3484
0.9405 −1.2850 0 −0.1005 −0.1472 −0.5767 0.4015 0.3302
0.2660 0.4362 0.1005 0 −0.0959 −0.2556 0.8034 −0.2116
0.5625 −0.2102 0.1472 0.0959 0 −0.0094 0.0537 0.6806
0.3012 −0.0295 0.5767 0.2556 0.0094 0 1.1843 −0.9966

−0.3524 0.4523 −0.4015 −0.8034 −0.0537 −1.1843 0 −0.5995
−0.8074 −0.3484 −0.3302 0.2116 −0.6806 0.9966 0.5995 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

and a symmetric damping matrix given by

D =

0.2166 −0.1567 −0.0184 0.0217 0.0311 −0.0897 −0.0159 0.0830
−0.1567 0.1915 0.0675 −0.0385 0.0270 0.0171 −0.0081 −0.1581
−0.0184 0.0675 0.3568 −0.0562 0.0919 −0.0079 0.0020 −0.1075
0.0217 −0.0385 −0.0562 0.1068 0.0314 0.0698 −0.0119 −0.0524
0.0311 0.0270 0.0919 0.0314 0.1170 −0.0273 −0.0844 −0.1121

−0.0897 0.0171 −0.0079 0.0698 −0.0273 0.1733 0.0082 −0.0237
−0.0159 −0.0081 0.0020 −0.0119 −0.0844 0.0082 0.1897 −0.0144
0.0830 −0.1581 −0.1075 −0.0524 −0.1121 −0.0237 −0.0144 0.3513

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

For brevity, we show these matrices with numbers only up to 4 decimal figures. A small computational exercise confirms that the two nec-
essary and sufficient conditions given in Eqs. (15) and (16) are satisfied by K and G. Hence, Result 2 is applicable.
The orthogonal matrix

Q =

−0.2791 −0.4238 −0.3262 0.5234 0.3017 0.0774 0.0137 0.5148
0.1341 −0.7320 0.4453 −0.2478 −0.2947 0.2742 0.0817 0.1335
0.4570 −0.0001 0.4705 0.5918 0.0850 −0.4020 0.2194 −0.0512

−0.4716 −0.3072 −0.0061 −0.1164 0.2458 −0.3252 0.5009 −0.5026
−0.3623 −0.1491 0.2283 0.3237 −0.1337 −0.0349 −0.7139 −0.4010
−0.0602 −0.0938 0.0924 −0.3914 0.0869 −0.7409 −0.3111 0.4154
0.3948 −0.1893 −0.0153 −0.1980 0.7784 0.1783 −0.2833 −0.2257
0.4268 −0.3512 −0.6427 0.0605 −0.3509 −0.2636 −0.0861 −0.2788

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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whose columns are the orthonormal eigenvectors of the matrix K
then yields the matrices

Λ = QTKQ = diag(3.5, 0.5, 4.0, 2.5, 3.0, 1.0, 1.5, 2.0)

Γ = QTGQ = diag
0 1

−1 0

[ ]
, 2

0 1
−1 0

[ ]
, 2

0 1
−1 0

[ ]
, 0, 0

( )
and

Ddiag = QTDQ = diag(0.2754, 0.0144, 0.6240, 0.3671, 0.2050,

0.1910, 0.0041, 0.022)

so that the system is quasi-diagonalized (and uncoupled) to the form
shown in Eq. (17).
We see, therefore, that Eq. (2) with the matrices K, G, and D

given in Eqs. (27)–(29) is decomposed into three independent
two-degree-of-freedom damped gyroscopic potential subsystems
and two independent single-degree-of-freedom damped potential
subsystems; the response of each of these subsystems can, of
course, be separately obtained.
As required by Result 2, the symmetric matrixDmust be express-

ible in the form shown in Eq. (7). It is easy to verify that, as required

D = 0.001(− K − 2K2 + 2K4 + (GKG)2 + 3G4) ▪

Remark 3. By using Eqs. (3)–(6), all the Results, Corollaries, and
Remarks, for the system described by Eq. (2) can be translated
for Eq. (1).
For example, in the original dynamical system described by

Eq. (1) with matrices M̃, K̃, G̃, and D̃, Eq. (7) becomes

D̃ = u0M̃ + M̃
∑n−1
i=1

(ai(M̃
−1
K̃)

i
+ bi(M̃

−1
G̃M̃

−1
K̃M̃

−1
G̃)

i
)

+ M̃
∑h−1
i=1

ci(M̃
−1
G̃)

2i
(30)

and the uncoupling conditions under which the system reduces to
the form (17)–(20) by a real change of coordinates are equivalent
to the conditions

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃ (31)

and

(K̃M̃
−1
G̃M̃

−1
)2 = (G̃M̃

−1
K̃M̃

−1
)2 (32)

Also, the condition KG=GK in Corollary 2 becomes

K̃M̃
−1
G̃ = G̃M̃

−1
K̃ (33)

▪

3 Conclusions
This paper investigates the uncoupling of an MDOF damped

gyroscopic potential system through the use of a real coordinate

transformation into independent subsystems, each of which has at
most two degrees-of-freedom. This brings about a reduction of
the response of such a damped MDOF system to the response of
subsystems of much lower order. It, therefore, provides an
improved understanding of the physics of the complex behavior
of such an MDOF system, affords closed-form solutions to the
response of such a system to external forces, and yields efficient
and more accurate computational methods in the determination of
its response.
From an application viewpoint, the following conclusions can be

drawn from this study.

(a) Two independent necessary and sufficient conditions are
shown to be required for such an uncoupling to occur
when using the special form of the damping matrix consid-
ered here.

(b) When the nonzero eigenvalues of the gyroscopic matrix are
distinct, a situation that arises often in practice, these two
independent conditions reduce to a single necessary and suf-
ficient condition for such uncoupling to be guaranteed.

(c) When the potential (stiffness) matrix and the gyroscopic
matrix commute the uncoupling is also shown to be guaran-
teed. However, from a practical standpoint, this result
appears not to be very useful since it demands that the stiff-
ness matrix must have many eigenvalues with multiplicity
greater than unity—a situation that is generally uncommon
in naturally occurring and engineered systems. The two inde-
pendent conditions obtained in item (a) above are satisfied by
a much broader range of stiffness and gyroscopic matrices
and, therefore, are more useful for real-life applications.

(d) It is shown that when the potential (stiffness) matrix has dis-
tinct eigenvalues—a situation that commonly arises in civil,
mechanical, and aerospace engineering, and also in nature
—every damping matrix that permits the uncoupling of a
damped gyroscopic potentialMDOF system into independent
subsystems with at most two degrees-of-freedom must have
the special form of the damping matrix presented herein.
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